Extensions 1→N→G→Q→1 with N=C42 and Q=C32

Direct product G=N×Q with N=C42 and Q=C32
dρLabelID
C32×C42378C3^2xC42378,60

Semidirect products G=N:Q with N=C42 and Q=C32
extensionφ:Q→Aut NdρLabelID
C42⋊C32 = C3×C6×C7⋊C3φ: C32/C3C3 ⊆ Aut C42126C42:C3^2378,52

Non-split extensions G=N.Q with N=C42 and Q=C32
extensionφ:Q→Aut NdρLabelID
C42.1C32 = C18×C7⋊C3φ: C32/C3C3 ⊆ Aut C421263C42.1C3^2378,23
C42.2C32 = C2×C63⋊C3φ: C32/C3C3 ⊆ Aut C421263C42.2C3^2378,24
C42.3C32 = C2×C633C3φ: C32/C3C3 ⊆ Aut C421263C42.3C3^2378,25
C42.4C32 = C6×C7⋊C9φ: C32/C3C3 ⊆ Aut C42378C42.4C3^2378,26
C42.5C32 = C2×C21.C32φ: C32/C3C3 ⊆ Aut C421263C42.5C3^2378,27
C42.6C32 = C2×C7⋊He3φ: C32/C3C3 ⊆ Aut C421263C42.6C3^2378,28
C42.7C32 = C14×He3central extension (φ=1)1263C42.7C3^2378,45
C42.8C32 = C14×3- 1+2central extension (φ=1)1263C42.8C3^2378,46

׿
×
𝔽